

Yanqing Li

Integration of Advanced Analytical Models in Value Based Maintenance

Integration of Advanced Analytical models in Value Based Maintenance (VBM)

RWE Generation UK

Yanqing Li

Information & Analytics

Lead Condition Monitoring Engineer

For more than 120 years, RWE has been passionate about generating electricity. Now, RWE is shaping the new energy era.

We aim to be climate-neutral by 2040

- Clear decarbonisation roadmap with further closures of coal activities
- Significant expansion in wind, solar and batteries
- Driving forward green hydrogen
- #2 gas fleet in Europe, 31 power plants
- 'Energy Company of the Year' 2023 at Global Platts Energy Awards

Start of our digital journey

÷	Optimized Application Landscape	Making better use of our existing software tool portfolio by creating transparency and providing (improved) training.				
Enhanced Remote Working		Ensuring the right equipment, software and training to enable RWEG employees to remotely work from anywhere- also beyond COVID-19.				
M	Data and Digital Platform	Improving the way we manage our data so we make data easily accessible and turn it into a valuable asset - thereby enabling current and future digital opportunities.				
	Digital Planning	Replace lengthy MTP process by a smarter and shorter, system-based forecast approach with lower granularity. Powered by smart data handling and predictive models.				
	Digital Reporting	Reduce and highly automate the standard reporting landscape and enable the experts with efficient analysis and visualization capabilities.				
	Centralised Performance Monitoring	Facilitate centralized performance monitoring by developing and standardising tools & methodologies across Generation.				
·	Remote Operations	Create the opportunity for gradual increase of remote operations by defining blueprint and roadmap; set up GY/LB for remote control.				
	Value Based Maintenance	Applying advanced algorithms for failure & economic impact prediction to optimize maintenance plans and interventions				

Our journey begins with eight lighthouses that cover a broad spectrum of our business. To be fast and flexible we will transform in an agile way starting each new development with a pilot and ensure scalability across the business.

DIGITALISATION will enable us to further maximize the value of our existing assets and will give us the competitive advantage essential for current and future business.

VBM describes a continuous optimisation of maintenance strategies and plans based on a regular valuation of the plant integrity risks

connea

Value Based Maintenance x Data foundation

Equip maintenance teams with the required information to optimise the value derived from maintenance

VBM	Optimization of maintenance strategies and planning based on a real time valuation of the plant integrity risks
€/£	Aimed at the reduction of high impact failures and of over- and under-maintenance
20	Developed by a cross-functional team of maintenance, operations, IT and data engineers
	The tool-set consists of dasboards and multiple underlying (ML) models to compute integritiy risk level, health status, failure probability and failure impact

Different dashboards have been developed to present the information **real-time** and from **any device**

Equipment Health Dashboard Dynamic overview of equipment health and asset condition

Dynamic Risk Dashboard Combine technical failure probability and commercial impact data to determine risk level of each component/failure mode

Ξ.

"We want to equip our maintenance teams with the required **tools and information** to optimize the value derived from maintenance"

Diagnostic Journey

Gas Turbine Ignitor Failure

Equipment Health Dashboard Dynamic overview of equipment health and asset condition

- Reliability Engineer identifies issue with GT ignitor
- Detailed information displayed along with link to Seeq
- Station is aware as there are 4 linked work orders and 1 action request

Station Overview Health Status	E,	Work Orders Action Requests Event Journal 4 Work Orders 日 1 AR(s) For Component
Most Critical Plant Elements Which Plant Element Needs Your Attention?		Detailed Information about Failure Modes Live Failure Modes Select category and search Q I Detect Most Critical Components. Deferred Failure Modes CCS Failure Mode Asset & Area
		KKS Asset & Area Failure Mode Name Last Health Trend (Last Trend Impact Impact Event Score 14 Days) 24 hrs Today +14 Days
		C2MBM11 GT 2.Combustor.EV Ignitor Failure 35 t 2
50 50 50 50 50 50 50 50 50 50 50 50 50 5		C1LAB92 GT 1.OTC.HP OTC Minimum Flow Valve Fa 46 t 8
· ²		C1LAB92 GT 2.OTC.HP OTC Minimum Flow Valve Fa 59 4 -2
		C1LAB92 GT 3.OTC.HP OTC Minimum Flow Valve Fa 750
		C1MBM11 GT 1.Combustor.EV Ignitor Failure 84
Impact in £	•	C3MBL30 GT 3.Air Intake Coalescer Filter Fouling 94 0
Unit C Size: Health Score change in last 24		
State and Development of Health Score		Details of selected Failure Mode
Select a Component or Failure Mode to See the Trend for the Element		Failure Mode: Trip on startup
GEN SI 100 GT 1 100		Root Cause Failure Mech.: GT ignitor failure
GT 2 1 66		Monitored PI Tags: CCC-C2MBM11CT001 XQ60, CCC-C2MBM11CT002 XQ60
HRSG 1		Local Effects of Failure Mode: Increase in time to ignition when compared to adjacent ignitor
HRSG 2 0 04.Mar 11.Mar 18		Health Score Refinement Method: No refinement, just the raw Health Rating
Health Score • 34 - 66 • 67 - 100		Seeg
		lip .

Seeq Dashboard

Seeq Model

٠

Health score logic written in Excel and coded in Python

Indicators and raw HS imported back into model for validation

- Health score calculation takes failure mode indicators: Time Diff, Ignitor 1 and 2 failure timespans
- Indicators are exported to PI

Failed start can cost up to

~£150k per start

mize	EV Ignitor Failure					INPUT			
PI P									
	Ignitor Time Diff = 0 (100%)	0	100	%					
	Ignitor Time Diff = 4.5 (66%)	4.5	66	%					
	Ignitor Time Diff = 10 (33%)	10	33	%	Ignitor Tin	Ignitor Time Diff > 10			
\\PI:	Ignitor failure > 0 (0%)	0	0	%	Ignitor 1 C	Ignitor 1 OR Ignitor 2 f		ailure timespan >0	
\ \									
	Ignitor Time Diff	0.777							
	Ignitor 1 failure timespan	0							
	Ignitor 2 failure timespan	0							
	Health Score (%)	94.13							
	1								

٠

٠

conneqt

Health Score Development Process

	Ideation	Design	Implementation	Validation	Deployment	
Key Participants	Station	Station	PI	PI & Monitoring	PI & Monitoring	
	Monitoring	Monitoring	Data Science Team	Data Science Team	Data Science Team	
Key Actions	Identify, prioritise & select Failure Modes to be developed Identify the requirements for the failure mode	Create bespoke model in Seeq Validate model Define and write HS calculation formula logic	Establish connection from the failure mode model to PI Create Transformer Function & Unit Test	Validate new failure mode health score in PI Vision & Seeq	Deploy health score to the VBM cockpit	
Key Deliverables	Target	Health Score	Centralised Data	Functioning Test	Functioning	
	Failure Modes	Logic	Final Health Score	Environment	PROD Environment	

Value Add Examples

High Pressure Pipework Creep Analysis

BEFORE

AFTER

- Import years of operational data into Excel
- Analysis done on a yearly basis
- Poor operation (or issues) cannot be identified in real time or prevented
- Creep life consumed and time to rupture data in real-time
- Dashboard to enable comparisons
- Allows integration into VBM to identify and resolve issues

Gas Turbine Air Inlet Filters

Water ingress into compressor due to filter fouling costing **£millions** in consequential damage

- When best to replace filters? Cost vs benefit analysis
- Calculate condensed water mass flow and trend

Identify mechanical integrity limit (MIL) for DP

- Allows value-based maintenance approach
- Dashboard showing trend of the current filter total DP
- Predicted overhaul date where the MIL will be reached
- Prevent unnecessary early replacements (vs conventional)

SOLUTION

CHALLENGE

RESULTS

Gas Turbine Air Inlet Filters

Stop Ratio Valve (SRV) wear and failure

SRV controls fuel gas entering the GT
Significant valve wear can render the machine

inoperable due to gas leakage

CHALLENGE

SOLUTION

RESULTS

- Monitor leakage through the SRV during runup, startup and rundown leakage tests
- Allows station to plan replacement before failure
- Each breakdown results in a production loss of ~£1.3m
- Since model created in 2021, it has prevented 2 further reactive breakdown failures

Stop Ratio Valve (SRV) wear and failure

Organisation & Next Steps

Reliability, Integrity & Efficiency Optimisation Team

Any Questions?

