

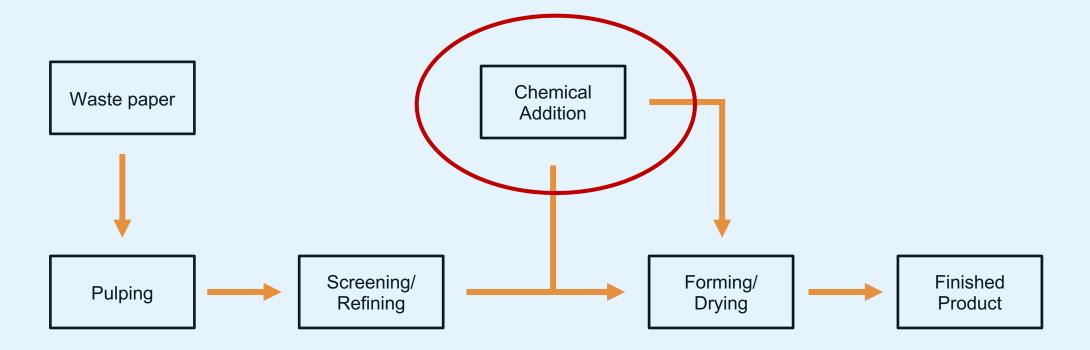
Optimizing for Excellence: Balancing cost, quality and sustainability

Brooke Hill Data Science Engineer

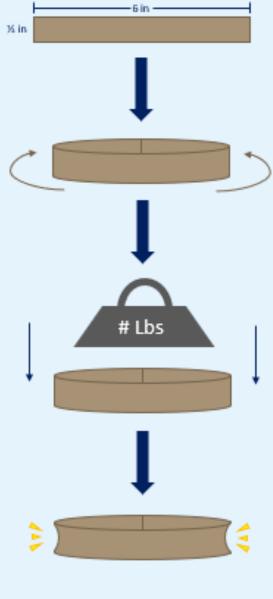
1 Year with Pratt Industries

Derek Valentin Data Science Engineer 8 Years with Pratt Industries

Pratt Industries

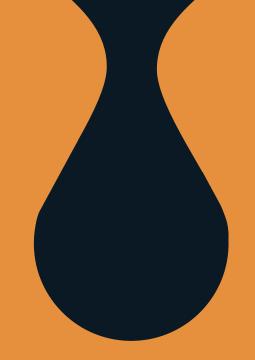

- Georgia-based company founded over 30 years ago
- World's largest, privately held 100% recycled paper and packaging company
 - Operates an extensive vertically integrated recycling company to supply six of the most modern, cost-effective paper mills in the country
- Dedicated to the sustainability of the environment, our customers, and our employees.

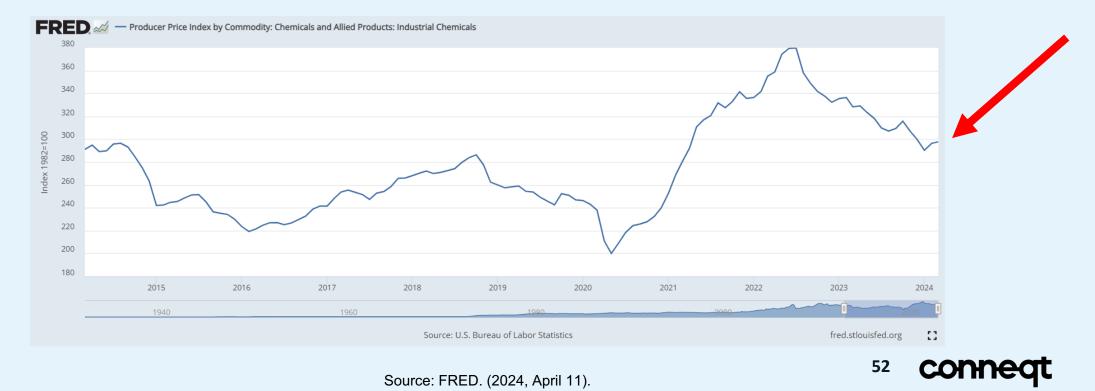
The Recycled Papermaking Process



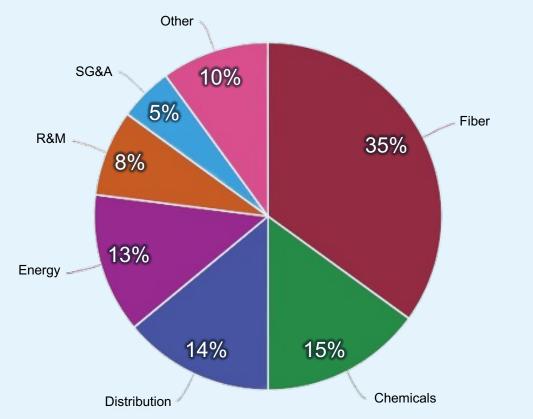
Ring Crush

- Ring crush tests the perpendicular compression strength of the paper (i.e. strength when stacked as a box)
- Additives that impact strength can be applied
 - In the paper slurry (dry strength)
 - On the paper surface (starch)
- Each paper type has a certain value that must be targeted to balance quality and cost

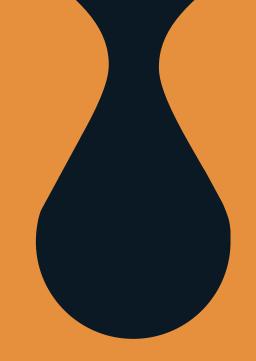

The Progression of Seeq within Pratt


Challenge

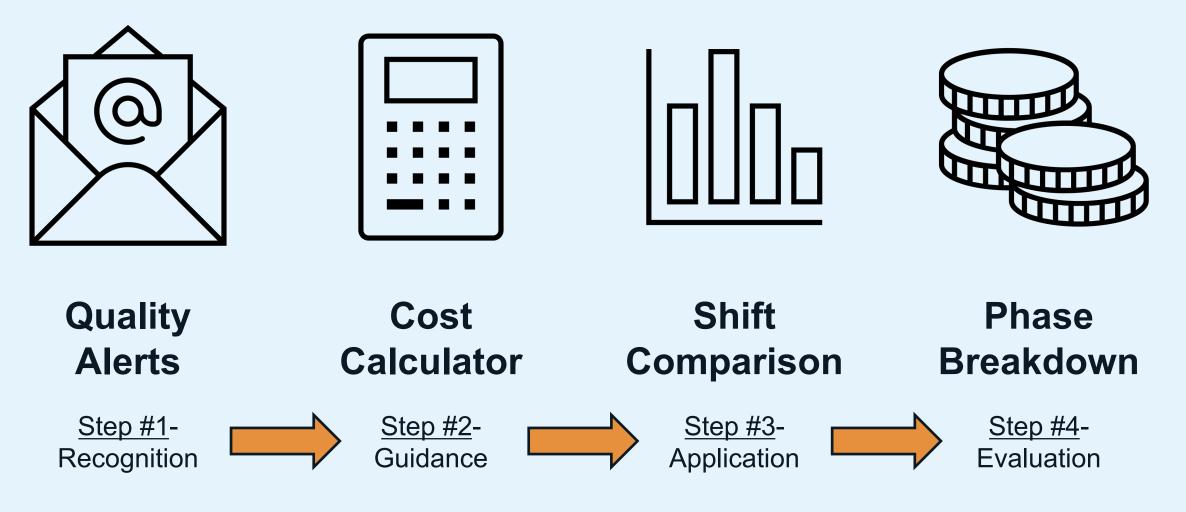
Reduction of Manufacturing Costs



- The cost of production and materials rises every year, so we are looking for ways to mitigate the effect of this inflation
 - Industrial chemical costs have increased significantly when looking at the past decade


Reduction of Manufacturing Costs

- Customer satisfaction is vital in any business model.
 - Maintaining product integrity while controlling cost is a delicate balance.
- Due to high variability in the process, the chemicals and strength additives required can fluctuate, even while producing the same product grade
 - Less uniform process control, causing variables to be constantly monitored and adjusted
 - The additives are one of the top expenditures for a paper mill
- Without trackable metrics, optimization is hard to quantify

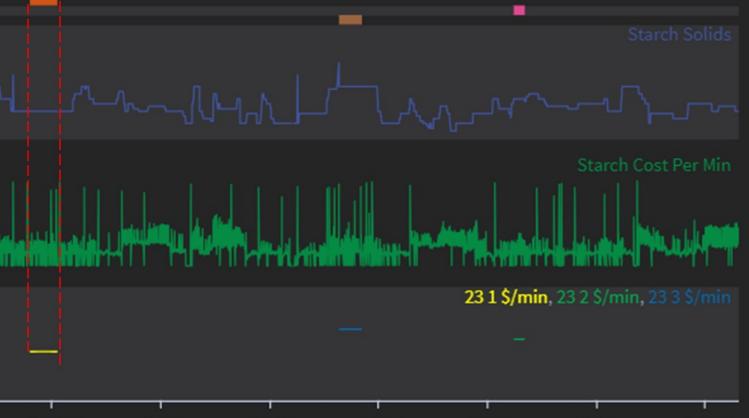


Solution

Optimization Package

Step #1 – Recognition

- Seeq email alerts designed to alert necessary parties that
 - a) Paper is at spec \rightarrow no alert is needed
 - b) There is room to optimize \rightarrow decrease chemical usage
 - C) Tests are failing \rightarrow increase chemical usage
- Alerts are dynamic, understanding the current paper grade to utilize correct specification values
- Helpful when management presence is limited (nights, weekends, holidays)

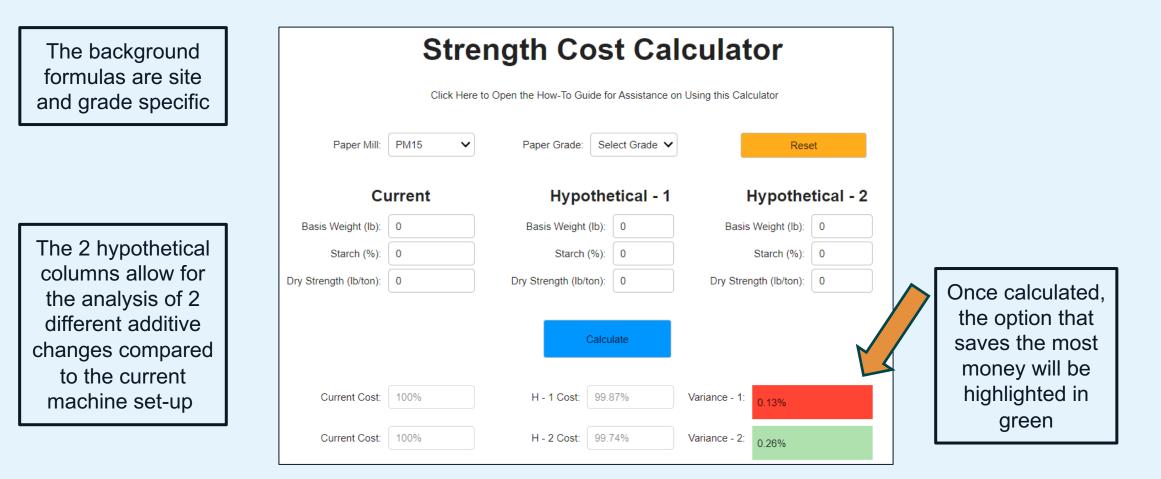

The background formulas are site and grade specific		Strength Cost Calculator						
	Paper Mil	I: PM15 🗸	Paper Grade: S	elect Grade 🗸	Reset			
	(Current	Hypoth	etical - 1	Hypothetical - 2			
	Basis Weight (Ib): 0	Basis Weight (lb)	: 0	Basis Weight (lb):			
	Starch (%): 0	Starch (%)	: 0	Starch (%): 0			
	Dry Strength (Ib/ton): 0	Dry Strength (lb/ton)	: 0	Dry Strength (lb/ton): 0			
			Calc	culate				
	Current Cos	t: 100%	H - 1 Cost: 99	9.87%	Variance - 1: 0.13%			
	Current Cos	t: 100%	H - 2 Cost: 99	9.74%	Variance - 2: 0.26%			

58

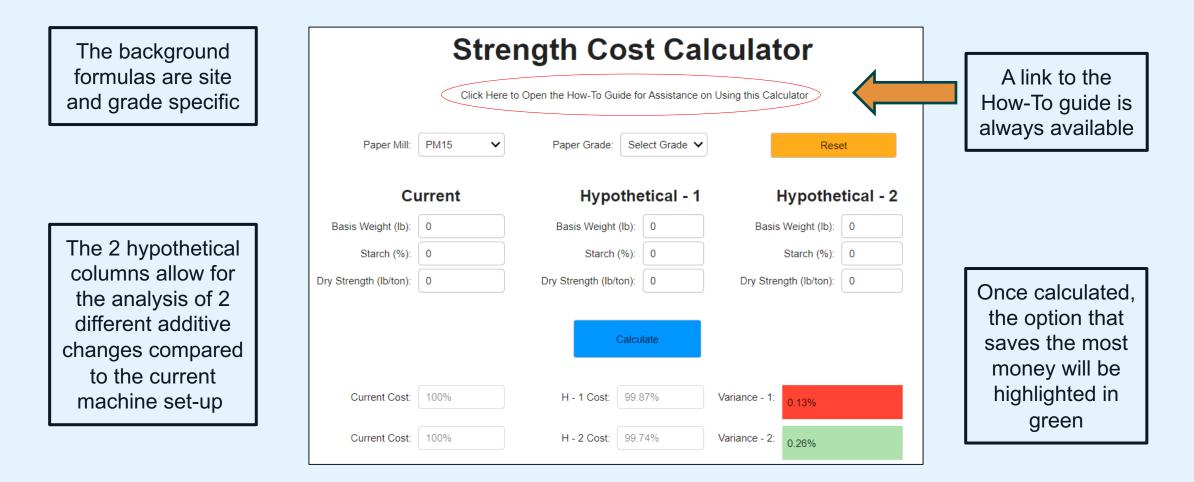
- Capsules created for the longest consistent grade runs (solids % or DS)
- Totalized the spend per minute during individual runs
- Specific additive spend averaged among 3 runs

- Appropriate cost values are added to the dictionary and can be recalled by the calculator to evaluate the cost of the hypothetical additive scenarios
- This allows everything (site, grade, additive) to be dynamic and completely customizable

The background formulas are site		Strength Cost Calculator							
and grade specific			Click Here	ide for Assistance o	n Using this Calo	culator			
		Paper Mill:	PM15 ¥	Paper Grade:	Select Grade 🗸		Res	et	
		Current		Hypothetical - 1		Hypothetical - 2			
		Basis Weight (Ib):	0	Basis Weight	(lb): 0	Basis	Weight (Ib):	0	
The 2 hypothetical		Starch (%):	0	Starch ((%): 0		Starch (%):	0	
columns allow for		Dry Strength (Ib/ton):	0	Dry Strength (lb/te	on): 0	Dry Strer	ngth (lb/ton):	0	
the analysis of 2 different additive changes compared to the current machine set-up				C	Calculate				
		Current Cost:	100%	H - 1 Cost:	99.87%	Variance - 1:	0.13%		
		Current Cost:	100%	H - 2 Cost:	99.74%	Variance - 2:	0.26%		



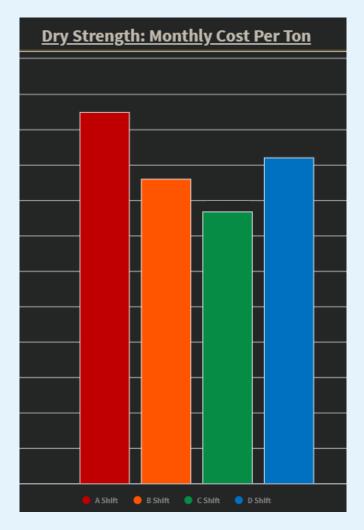
Current		Hypothe	tical - 1	Hypothetical - 2			
Basis Weight (Ib):	0	Basis Weight (lb):	0	Basis Weight (lb):	0		
Starch (%):	0	Starch (%):	0	Starch (%):	0		
Dry Strength (lb/ton):	0	Dry Strength (Ib/ton):	0	Dry Strength (lb/ton):	0		
Current		Hypothe	tical - 1	Hypothetical - 2			
Basis Weight (Ib):	Value A	Basis Weight (lb):	0	Basis Weight (Ib):	0		
Starch (%):	Value B	Starch (%):	0	Starch (%):	0		
Dry Strength (lb/ton):	Value C	Dry Strength (Ib/ton):	0	Dry Strength (lb/ton):	0		
Current		Hypothe	Hypothetical - 1		Hypothetical - 2		
Basis Weight (Ib):	Value A	Basis Weight (lb):	Value A	Basis Weight (lb):	Value A		
Starch (%):	Value B	Starch (%):	Value D	Starch (%):	Value B		
Dry Strength (lb/ton):	Value C	Dry Strength (Ib/ton):	Value C	Dry Strength (lb/ton):	Value E		


- The cost variance is a comparison of both the hypothetical to the current and the hypotheticals to each other
- The cost values are turned into percentages to keep additive cost ambiguity
- The green/red highlighting is a quick yes/no indicator to drive the optimization

$$Variance \ \# = \frac{Current \ \$ - Hypothetical \ \$}{Current \ \$} * 100 = X\%$$

- Building guides for all our projects helps to increase interest and support
- Tools are built for different departments with varying levels of Seeq knowledge
 - Many unique input blanks, multiple calculation functions, etc.
- Answers are readily available and time seeking out an expert is no longer needed
 - Can be referenced anytime (nights, weekends) and can be referenced any number of times

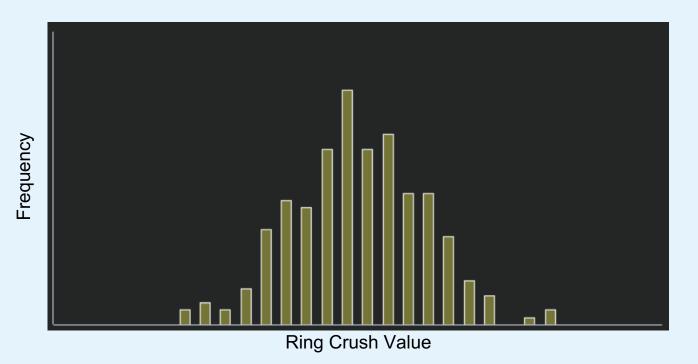
Step #3 – Application


- A two-part dashboard that monitors both savings and quality
- The shifts are monitored individually to measure their level of implementation
- Data transparency utilizes the inherent competitive nature of the shifts, pushing for better optimization
- Top performing shift earns a reward for the month
 - Rewards include lunches or prizes
 - This creates buy-in, motivation, and positive reinforcement
- Shifts that need improvement can receive targeted assistance

Step #3 – Application

- Shift Comparison Dashboard
- Displays costs of Dry Strength, Starch, and Basis Weight per shift, per month.

- Effective usage of the tools is quantified by shift spend
- Spend data is
 normalized on a per
 ton basis which
 allows for consistent
 and fair comparison



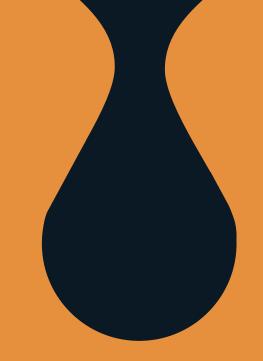
Step #3 – Application

68

- To ensure product integrity, the specification values are tracked to ensure the process isn't over-optimized
- Finished product quality should not be a casualty of optimization
- Ring Crush values follow a normal distribution
 - Any deviation from this bell curve suggests errors in testing

Step #4 – Evaluation

Divided the past year into three distinct 5-month blocks to analyze the financial impact of both Seeq and the optimization package.


Phases:

- Phase 1: Pre-Seeq Introduction [January 1, 2023 June 1, 2023]
- Phase 2: Post Process Change [June 1, 2023 November 1, 2023]
- Phase 3: Post Optimization Package [November 1, 2023 April 1, 2024]

The phase spend is quantified by the spend on starch, dry strength, and basis weight since that is what the optimization package is targeting.

Results

Preliminary Savings

- Initial analysis shows the optimization package has yielded a savings of 3-5% on our most produced grade.
- These savings were a result of
 - Timely alerts on when there is room to optimize
 - Effective decision guiding tools
 - Real-time dashboard displaying cost reduction efforts
 - Rewarding top performers
- With further analysis, the savings from all grades will be totaled.

Moving Forward

- Applying these methods to other mills will help to offset the rising market for all locations.
- Continue to expand upon these tools with machine efficiency metrics
 - Downtime
 - Feed-up time
 - Production speed
- Continue to push these tools and others like...

Project Portfolio

Mobile Safety Applications

Chemical Totalizer

Budget Estimator

SDS Database

Process Centerlining Automatic Ordering System

Questions?

Brooke Hill

bhill@prattindustries.com

517-775-3840

 \bigcirc Derek Valentin

dvalentin@prattindustries.com

S 903-715-8381

e e

www.linkedin.com/in/derek-pivetz-valentin/

