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What We Manufacture
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Material-Sparing Tablets

7

| Compactin Compression Coating

conneqtz




Material-Sparing Tablets
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Material-Sparing Tablets

i I
Compaction

Losses:
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Time: 30-min avg.
Startup

Material: N/A

Necessary to reach
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Targeted Quality
Attributes:
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Ribbon Solid Fraction
__ Pribbon
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target solid fraction prior
to entering production.




Material-Sparing Tablets
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Compaction
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Startup
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Compression

Losses:
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30-min avg.
Startup

Material: Startup
Tablets,
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Time:

Rejects
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Targeted Quality
Attributes:
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Tablet Weight
Tablet Thickness
Tablet Hardness
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Exceeding product limits can
result in potential loss of
product
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Our Constraints

Resource Constraints
« Set number of machines available for operation
« Set number of trained operators

Material Constraints
« Limited, expensive active pharmaceutical ingredient (API)
« Set quantity of dispensed material

Time Constraints
* Firm delivery dates for clinical supply
* Clinical projects in queue



Our Needs

A digital, predictive tool




Our Needs

A digital, predictive tool...that
J minimizes material waste
d shortens startup time

1 builds process understanding over time







Model Roadmap
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Model Design

Similarity-Informed Comparison To Historical Data

Pre-Sample Prediction
Sample-Informed Regression

Post-Regression Continuous Monitoring

Data Capture for Downstream Models




Model Desigr

Unsupervised Learning
(PCA Prioritization)

Similarity-Informed Comparison To Historical Data

Supervised Learning
(Random Forest)

Pre-Sample Prediction

Online Learning

Sample-Informed Regression (Next State Prediction)

Post-Hoc Model Fitting

Post-Regression Continuous Monitoring (Food Forward)

Data Capture for Downstream Models




Model Design

Similarity-Informed Comparison To Historical Data

Seeq DATA LAB

Pre-Sample Prediction

Sample-Informed Regression )

Post-Regression Continuous Monitoring

SeeqQ

Data Capture for Downstream Models




Similarity-Informed Comparison To Historical Data

Steps

1) A new product is entered into the model.



Similarity-Informed Comparison To Historical Data

Steps
1) A new product is entered into the model.
Parameters: RC Configuration:

Min SF Max SF




Steps
1) A new product is entered into the model.

2) Similarity scores are then assigned to each previously recorded batch over
multiple parameters:



Steps
1) A new product is entered into the model.

2) Similarity scores are then assigned to each previously recorded batch over multiple parameters:
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Similarity-Informed Comparison To Historical Data

Available Similarity Index
Contributors

Roll Design

Particle Size Distribution

Formulation Type (MST x.0)

Drug Load
True Density
Compactor Used

Recency

(
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Only D10, D90 available

Compactor not yet
allocated

~
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Available Similarity Index
Contributors

Particle Size Distribution
Formulation Type (MST x.0)
Drug Load
True Density

Recency



Steps
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1) A new product is entered into the model. . Logbook |

Parameters: RC Configuration:
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Pre-Sample Prediction

Solid
Fraction

Roll Force



Pre-Sample Prediction

Solid
Fraction
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Option 1

Sample-Informed Regression
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Solid Fraction (SF) at 2mm

Target Solid Fraction Recommendations: 2mm
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Solid Fraction (SF) at 2mm

Sample-Informed Regression

Target Solid Fraction Recommendations: 2mm
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Sample-Informed Regression

Recorded Samples

Roll
index Force
(kN/cm)
0 3.5
1 3.0
2 3.0
3 3.0

Roll
Gap Throughput
(mm) (g/sec)

20

2.0

20

NEW SAMPLE

Solid

Fraction
(Calculation)

0.66

0.63

0.63

0.63

Actions
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Roll Force (kN/cm)
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2 25 3 35 4
Gap Width (mm)



Process Variables:

Parameters: API Properties: RC Configuration: ) . -
Tabs: Contour, Axial Regression,Model Statistics
Gap inmm
True Densit kg/m3 ertei -
. 2
( g » :I 9 Load % K'n . 0.8
ample Me - ol 2 5‘
v micron Sm .
' ' 0.76
..... Speed in RPM —
micron o = O
. s
f 7z —0.72
micron _‘4’
. 8 s
g 5 0.74
MCC Bulk Den g/mi 9 0.68
Force in kN/ecm '_O‘ 4 0.72
-4
, 0.7 0.64
3
8 0.6
2
2 2.5 3 3.5 -
Gap Width (mm)
Recorded Samples
index Roll Force (kN/cm) Roll Gap (mm) Throughput (g/sec) TP Solid Fraction (Calculation) Actions




Recorded Samples

Roll Roll
index Force Gap
(kN/cm) (mm)

0 3.5 2

1 3.0 20
2 3.0 20
3 3.0 20

Throughput
(g/sec)

NEW SAMPLE

Solid
Fraction Actions
(Calculation)

0.66 7
uj
0.63 7
o
0.63 7
o
0.63 7
o

B:30 am

8:40 am

8:50 am

9:00 am

9:10 am

9:20 am

9:30 am

9:40 am

9:50 am

10:00 am






Material-Sparing Tablets

Compaction Compression




Material-Sparing Tablets

Densification
Compressive Forces

Compaction Compression
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Key Benefits of Linking Process Models

Stronger Process Control

Shorter Startup Time, Faster Time To Completion

L ower Material Losses
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