

Seeq

Jeff Skarda

Digital Solutions Sr. Consultant

Better Care for a Better World

(3) Kimberly-Clark

Countries where our leading brands are sold

Number of countries in which our products hold the #1 or #2 brand share

Of the world's population use one or more of our products each day

Diaper assets scrap product during ramp up

Analyzing startup waste using a legacy application

1-2 distinct user2-4 views per year

The need to re-imagine

Requirements

Requirements	Response:
Easy access to MES Waste Events	Seeq already has access
Data processing is required to reconstruct the machine start-up waste profile based on individual on waste events	Seeq Data lab uses Python. Let's do it in Python
Determine and visualize best in class, worst in class	There are lots of options for data visualization using Python Libraries. How about a bubble chart?
Tree Map of Waste Events by Reasons	Plotly has tree maps
Add \$\$\$ cost impact to bring the data to life for the team	That's easy
Provide an always accessible dashboard	We can schedule the Seeq Data Lab project to pull and stage the data each night

Foundational knowledge to speak the language

"An electrical engineer trying to write python code"

SeeQ DATA LAB

Puzzle Piece #1: Data Extraction

- "Find all tags called "Waste Events"
- "Query the last 6 months of data for each asset's waste event"
- "Remove data where production mode is Trial or Project Startup"
- "Now re-write this code as a function called get waste events"


```
def get_waste_events(asset, startDateTime, endDateTime):
    """
    Function to search for 'WasteEvents' in a specified asset path and pull the data within a given time range.

Parameters:
    asset (str): The asset path to search within.
    startDateTime (str): The start date and time for the data pull.
    endDateTime (str): The end date and time for the data pull.

Returns:
    pd.DataFrame: A DataFrame containing the pulled data, sorted by 'Capsule Start' and 'current_cut_count'.
    """

# Define the search query
search_query = {
        'Name': f'{asset} Waste Events',
        'DataSource': 'PIPE',
        'Type': 'StoredCondition'
}

# Execute the search query
search_results = spy.search(search_query,quiet=True)

# Pull data from the worksheet with the search query
waste_df = spy.pull(search_results, start=startDateTime, end=endDateTime,quiet=True)
```

Data Extraction

Puzzle Piece #2: Data Analysis

Data Analysis

- "Given the waste events dataframe, identify the zero-reference indicating this is a new machine start-up event"
- "Compute the number of products between the zero reference and this event"
- "Calculate the total number of good products, scrapped products and percent waste for each machine start-up"
- "Now re-write this code as a function called calculate startup waste"

Puzzle Piece #3: Data Visualization

- "Create a Plotly Dash App used to visualize data staged as a .CSV file.
 This app should have 3 tabs, summary, graphs and table."
- "Load data from the summary_data.CSV as a bubble chart"
- "Make the background red anytime start-up waste is above x%"
- "Create a tree map showing the distribution of waste reasons"

Data Visualization

Puzzle Piece #4: Make it Interactive

Make it Interactive

"Provide an input field to allow a user to select asset class"

"When a user selects a specific asset class, filter the bubble chart for only assets of that class"

"Allow a user to select 1 or more assets to trend and compare similar assets"

"Add an ability to download the summarized data set"

Putting the pieces of the puzzle together

Putting the pieces of the puzzle together

Putting the pieces of the puzzle together

Democratizing start-up waste data provides quick wins

"Thanks to the tool, I was able to identify cull 414 as a problem cull on P4 vs the other assets. I shared the info with the mill so they can act."

"This was the info I mentioned to you on the way out yesterday. I am not sure how fixable this material movement is, but I wanted to put it on your radar to get a small waste win for the year-on-year results."

Democratizing start-up waste data visualization

1-2 distinct users2-4 views per year

65 distinct viewers13 views per week

Thank you!

Jeff Skarda

Kimberly-Clark

Jeff Skarda ∅

Digital Solutions Senior Consultant -North America Supply Chain Digital Transformation Team

Neenah, Wisconsin, United States ·

