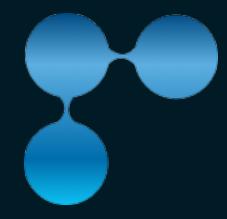


connect

METALS & MATERIALS



Zach Baer, Manufacturing Data Analyst

International Paper

Recovery Boiler Asset Group Usage

Zach Baer

International Paper

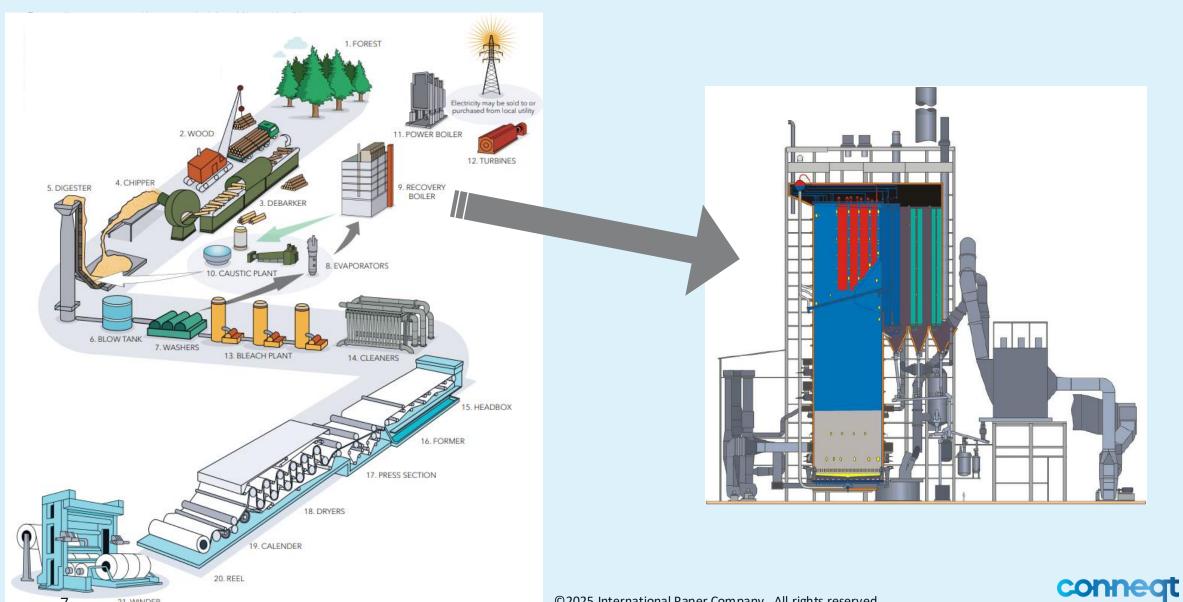
Agenda

- Company Overview
- Process Overview
- Reduction Efficiency Analysis
- Strain Gauge Fouling Rate
- Boiler Steam Efficiency Tag
- Asset Groups

International Paper

For more than 125 years, International Paper has been a catalyst in the global economy. We make essential products people depend on every day — from sustainable packaging to absorbent pulp for personal care and other products.

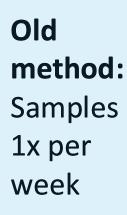
Building on our strong foundation, we're here for what's now and we're **creating what's next.**



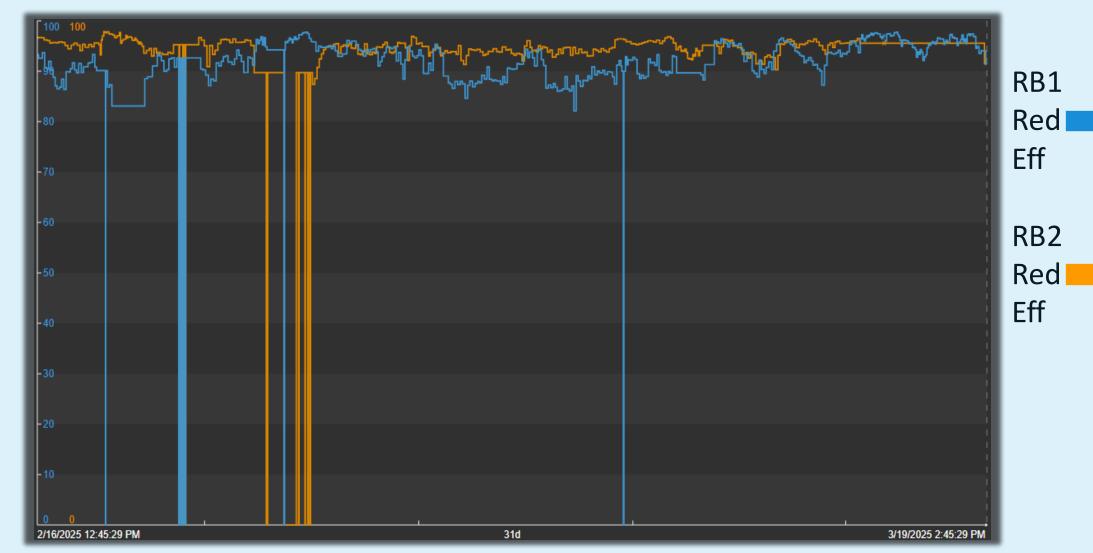
Source: International Paper – Corporate Communications

Process Overview

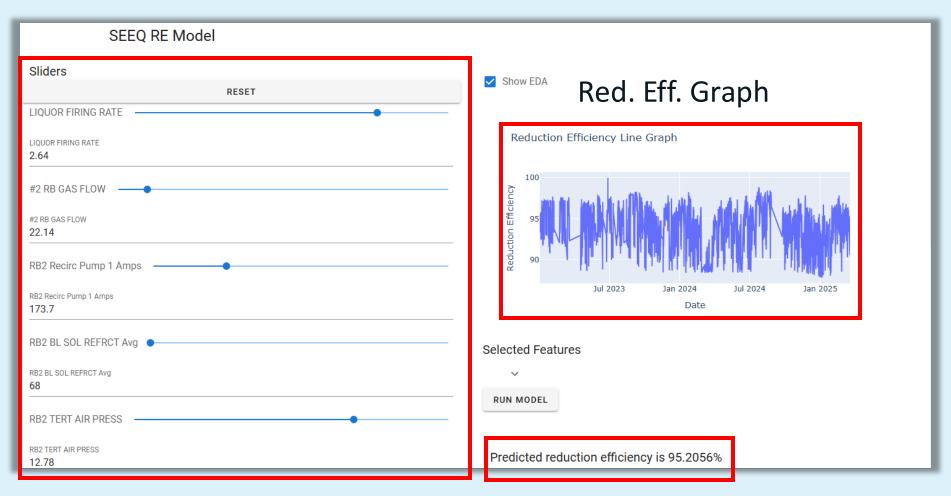
21. WINDER



©2025 International Paper Company. All rights reserved


Reduction Efficiency Analysis

Current View



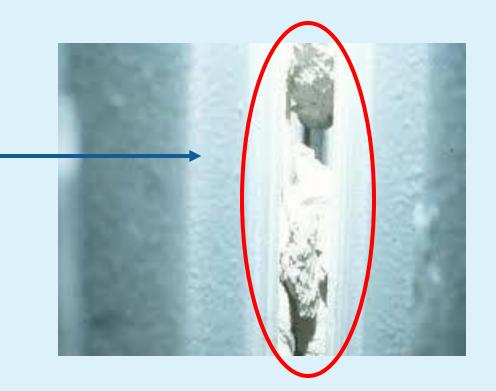
New method: Samples every 2 hours

Visualization

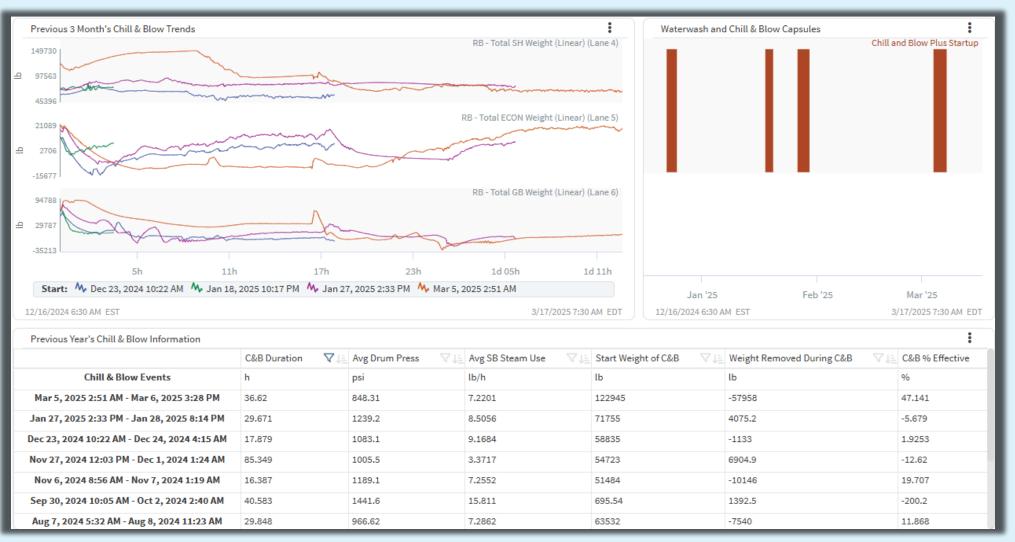
- Tool built using Seeq Data Lab
- Used PI Vision
 Werusys Embedder
 to display add-on
- Users able to see how changes impact Reduction Efficiency

Model Variables

Predicted Reduction Efficiency



Strain Gauge Fouling Rate


Background

- Would only watch Superheater zone weight
- Did not compare current to previous operations
- No "assessment" of chill & blow cleanings
- Made judgement (gut-feeling) calls for cleanings

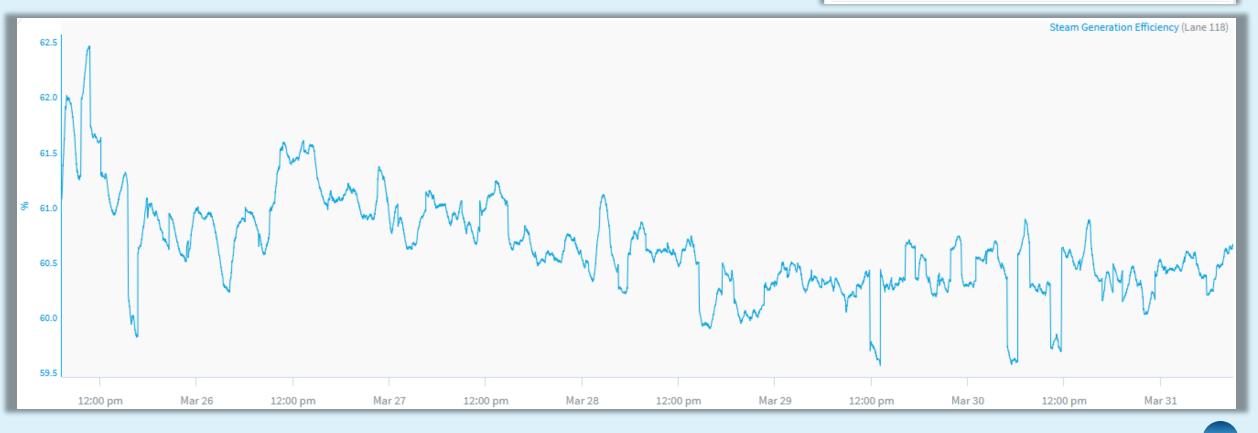
Visualization

- Built tool in Seeq Workbench
- Using Seeq
 Organizer to
 display to mill
- Allows mill to see quick comparisons of current operations vs previous

Boiler Steam Efficiency Tag

Background

Number	s of heavy bl Sodium, Na Potassium, I Carbon, C Hydrogen, H Sulfur, S Oxygen, O	ltem lack liquor	0.1821 0.0158 0.3155 0.0340 0.0561 0.3598	0.01580.0150.31550.3150.03400.0340.05610.056		 Ib / Ib solids 		Errors: 0 Error? Error Check	Updated once every 3 -5 years using previous year's average data	
7	Chlorine, Cl Inerts		0.0018 0.0349		0.0018 0.0349	lb / lb solids lb / lb solids				
9 10	Total Gross Solids	<< Main MENU	1 0000		Steam	n generation efficiency		0	62.2 %	
		Number	ltem			Value in SI UNITS	Value	Result in des	ired unit	
		Enthalpy CalculationsEnt1Sootblowing steam (if steam is not internal toEnt2Feedwater to EconomizerEnt3Steam drum blowdown waterEnt4Steam at outlet conditionsEnt5Direct black liquor heating steam				2881.8179 629.1784 1432.9424 3275.3173 3167.1774	2881.82 270.49 1432.94 1408.07 3167.18	kJ / kg BTU / Ib kJ / kg BTU / Ib kJ / kg		


conneqt

Boiler Steam Efficiency Tag

Recovery Boiler Steam Efficiency Seeq Workbench

☆ » Boiler Steam Efficiency						
Select All						
🕅 Mill 1	(i) ≓ ☆ >					
🕅 Mill 2	(i) ₹ 🛠 >					

connequ

Visualization

Asset Groups

Asset Group Creation

Variables

Assets		Air Temp tor Flow	Air Temp tor Temp	Air Temp tor Flow	Air Temp tor Temp	Air Temp tor Flow	Ash Recycle	CO in Flue vol.)
Mill 1	:	\odot	\odot	\odot	\odot	\odot	fx	fx
Mill 2		\odot	\odot	\odot	\odot	\odot	fx	fx

Stay the same	Name \$ GL Reduction Efficiency Smelt Reduction Efficiency O2 in Flue Gas (% wet vol.) A O2 in Flue Gas (% wet vol.) B Avg RB O2 % CO in Flue Gas (ppm wet vol.) SO2 in Flue Gas (ppm wet vol.) Air Temp to Furnace (weighted avg mass flow) Pri Air Flow Air Temp to Furnace (weighted avg mass flow) Pri Air Temp	Asset Mill 1 Mill 1	Changes mills
	Air Temp to Furnace (weighted avg mass flow) Sec Air Flow	Mill 1	

Benefits

- Troubleshooting Help
- Better insights during trials
- Improve Recovery Boiler Operations
 - Reduce Natural Gas & Salt Cake usage
 - Understand & Control Fouling Rate better
 - Increase Boiler Steam Efficiency
 - Higher Steam Flow, Pressure, & Temperature
- Turbine Performance Improvements
- Lower Maintenance and Downtime

Learnings

- Importance of Asset Groups
 - Only have to develop equations once
 - Include tags, calculations, and conditions
- Able to customize calculations & conditions for each asset
- Friendly Names have to match to be able to swap
- Workbench vs Data Lab creation
- Useful in Organizer

Asset Trees 1: Introduction

Asset trees are a foundational tool that can be used to wrangle the full analytic capabilities of Seeq's software. They sort physical locations, pieces of equipment, and data on that equipment into a hierarchical structure. Organizing your data into an asset tree allows you to:

- Utilize asset swapping to rapidly create identical visualizations for different pieces of equipment
- · Write high-value calculations for your components and scale them across all components in your tree
- Automatically generate scalable content and custom analyses
- Use your tree as a starting point for roll-ups, calculations, displays, dashboards, and reports

connec

QUESTIONS?

COMPACE OF THANK YOU!