

Seeq

Albert Swalha

Western Midstream

SWD Injection - Robust Reporting Solutions with Seeq

Albert Sawalha

Western Midstream

Introduction & Bio

- University of Michigan ChemE
- 15+ Years in Process Data space
- Industry Experience:
 - Industrial Gas
 - Chemical Monitoring
 - Pharmaceutical
 - Petrochemicals
 - Oil & Gas
- Career Focus: Facilitate Actionable Data!

Problem Statement

- Railroad Commission of Texas requires monthly reporting of daily Saltwater Disposal (SWD) well data – Pressures & Volumes
- Existing process for collecting, analyzing, and submitting daily injection data too cumbersome
- Excel Workbook with 34 tabs pulling sampling arrays of 15minute data and ~160,000 cells with data call formulas.

- Data prone to outliers requiring manual checking and review
- New SWD additions involve sizable spreadsheet re-work
- Involved process that required 22-24 work-hours of preparation & review every month

Solution Requirements

 Streamlined process for 60+ SWD locations in West Texas

 New path forward should result in increased confidence in report data with reduced overhead

Solution must be scalable to new SWDs coming online

Solution Implementation in Seeq

Used a Combination of Seeq Apps in tandem to craft streamlined reporting solution:

Seeq ORGANIZER

Seeq WORKBENCH

Selection (Control of Control of

Trend & Analyze Data

Report the Data & Exceptions

Seeq DATA LAB

Structure & Summarize the Data

Solution: Seeq Workbench

		Daily Averaessure	Daily Instax Rate	Daily Maximessure	Daily TotalVolume	Injection day	Injection Pressure
APC 2-21 1D 2 #1)	0	fx	fx	fx	fx	fx	②
APC 2-28 1D 2 #2)	0	fx	fx	fx	fx	fx	⊘
APC 28-17 1Der 1)	0	fx	fx	fx	fx	fx	②
APC 28-20 1Dwer 2)	:	fx	fx	fx	fx	fx	②
APC 29-29 1Dey 29)	0	fx	fx	fx	fx	fx	⊘
APC 29-29 2D (Yeti 2)	0	fx	fx	fx	fx	fx	②
APC 29-29 3D (Yeti 1)	:	fx	fx	fx	fx	fx	②
APC 3-8 1D (Pluto)	:	fx	fx	fx	fx	fx	⊘
APC 34-179 1ger 1)	0	fx	fx	fx	fx	fx	②
APC 34-197 1ger 2)	0	fx	fx	fx	fx	fx	②
APC 54-1-18 5 #1)		fx	fx	fx	fx	fx	⊘
APC 54-1-18 5 #3)	0	fx	fx	fx	fx	fx	②
APC 54-2-15awk 1)	0	fx	fx	fx	fx	fx	②
APC 54-2-15awk 2)	0	fx	fx	fx	fx	fx	⊘
APC 54-5-1 2ro 3)	:	fx	fx	fx	fx	fx	②
APC 54-5-5 1tro 4)	0	fx	fx	fx	fx	fx	0

- Asset Group Editor allows each SWD to be an "asset"
 - Defines Variables
 - Pulls relevant PI Tags as signal
 - New SWDs are easy to add this way with templated approach
 - Signal cleansing from outliers and noisy data / transmitter faults

 Supports ad-hoc trending / beneficial for troubleshooting

Solution: Seeq Data Lab

- Seeq Data Lab Scripts in Python
 - Summarizes calculation outputs into Excel format for easy reporting
 - Contains instruction for monthly email distribution
 - BONUS! Formatting arranged identically to RRC to allow "one-copy one-paste" approach
- Seeq Analytics Engineering team provided support
- Highlight: Once and Done Exercise

```
5 now = datetime.now(central)
       7 # Step 3: Calculate the start of this month in Central Time
       8 start this month = now.replace(day=1, hour=7, minute=0, second=0, microsecond=0)
       10 # Step 4: Calculate the start of last month
       11 end of last month = start this month - timedelta(days=1)
       12 start_last_month = end_of_last_month.replace(day=1, hour=7, minute=0, second=0, microsecond=0)
       1 report='last month' #'last' #'last month
       3 if report=='current':
              start=start this month
       6 elif report=='last month':
              start=start_last_month
              end=end_of_last_month
              print('Invalid Date Range Selection')
[10]: 1 #Search for the signals from the Asset Group, limit to the report signals, and then pull the data
       2 all_signals=spy.search({'Path':asset_group_name,'Type':'Signal'},workbook=workbook_id,quiet=True)
       4 #Limit to just the signals of interest
       5 report signals df=all signals[all signals['Name'].isin(report signals)]
       6 data=spy.pull(report signals df,start=start,end=end,grid=None,quiet=True)
```


Solution: Seeq Organizer

- Arranges ad-hoc end-user facing visualization and reporting
- Allows viewer to change reporting month and toggle by SWD
- Conditional formatting allows visual detection of exceedances
- Produces exception report(s) related to operation outside of permit limits

Putting it All Together

- New SWD Reporting system allows more "hands-off" approach and frees up Regulatory Analyst for other tasks.
- Monthly reporting cycle burden reduced from 22-24 hours (loading spreadsheets, reviewing uncertainties in polled data or accidentally misconfigured cells, error checking, etc) to 1-2 hours total (Quick review and send)
- New function: Proactively identifies exceptions automatically
- Reduction of 90%+ in administrative burden every month!
- This solution will be used as a springboard for future projects.

Questions to Ask

- Do I have any spreadsheet reports running recurring calculations (especially a large amount of them) on fixed assets?
- Are these Excel reports at risk of being accidentally altered?
- If I only had more assistance with Python code, would I be able to produce a better solution? Seeq Customer Success team is very flexible with training and assistance. There is also an AI assistant to help with common coding questions.

