

### Seeq

Sjoerd Hoogwater

Phillips 66





# Coke Drum Blowout Identification

Ryan DeFever

Cliff Amundsen

Modeling Engineer, ERI

Sjoerd Hoogwater

Engineer, ERI

Phillips 66

Phillips 66

Consulting Process Engineer

Phillips 66 Midstream

conneqt



#### Leading Integrated Downstream Energy Provider

Positioned for value creation through economic cycles







#### **CHEMICALS**

Chemicals and polymers the world needs

- 95% advantaged feedstock portfolio.
- Proprietary technology and global marketing network.

#### **MARKETING & SPECIALTIES**

Phillips 66<sup>®</sup>, Conoco<sup>®</sup>, 76<sup>®</sup>, JET<sup>®</sup> and Coop branded fuels and services

- ~7,260 sites in the U.S. and ~1,670 internationally.
- Leading lubricants manufacturer in the United States.

#### **MIDSTREAM**

Highly integrated with other segments

- Natural gas liquids wellhead-to-market value chain.
- Crude oil and product pipelines and terminals.
- 70,000+ miles of crude oil, refined petroleum product, NGL and natural gas pipeline systems in the United States.

#### **REFINING**

Geographically diversified and vertically integrated

- 9 refineries in the United States.
- 2 refineries in Europe.
- 1.8 million BPD of crude capacity.



#### RENEWABLE FUELS

World-scale producer in renewable fuels

- Rodeo Renewable Energy Complex.
- Renewable feedstock processing of ~50,000 BPD (~800 million gallons per year).
- Capability to produce ~10,000 BPD of renewable jet (blend up to 20,000 BPD SAF).



, 2024, Phillips 66 an nounced plans to cease operations at the Los Angeles Refinery in the fourth quarter of 2025.

As of September 30, 2024

<sup>14, 2024,</sup> Phillips 66 an nounced the agreement to sell interest in Switzerland-based joint venture with COOP in the first quarter of 2025



## Integrated Downstream Energy Company Enabling long-term value creation and positioning for the future

#### **MISSION**

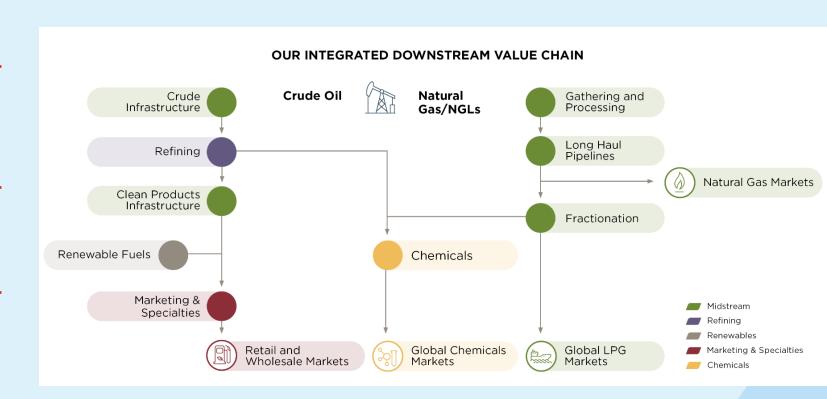
Providing Energy. Improving Lives.

#### **VISION**

Be the leading integrated downstream energy provider.

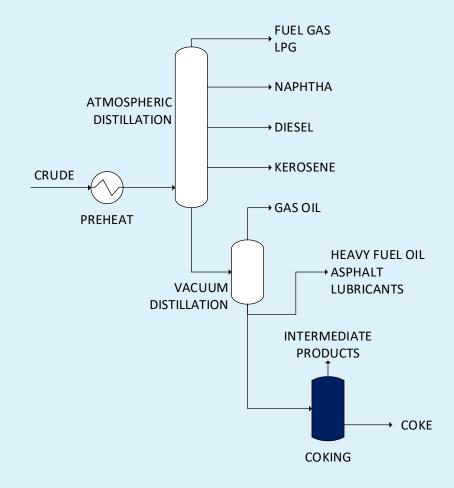
#### **VALUES**

Safety. Honor. Commitment.


#### **OUR ENERGY IN ACTION**

Work for the greater good.

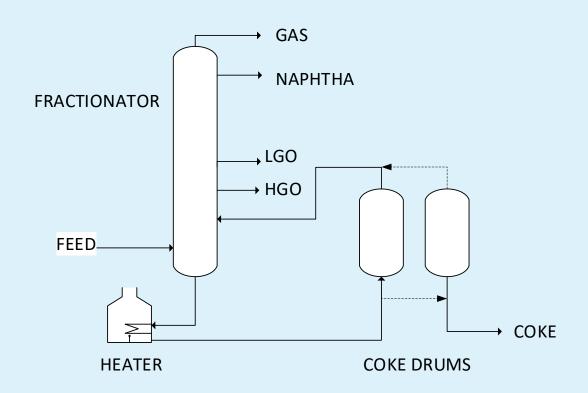
Cultivate an environment of trust.


Seek different perspectives.

Pursue excellence.



#### What is a coker?


- Processes heavy residue to produce distillates (naphtha, diesel)
- Coke is mostly carbon
- Used for fuel, electrodes, steel manufacturing





### Typical configuration

- Fractionator
- Heater
- Coke drum vessels
  - One in filling mode: coking reaction results in solid coke deposition (~22 hours)
  - One in decoking mode
    - Quench with steam
    - Quench with water
    - Drill out coke with automated water drills (~5 hours)







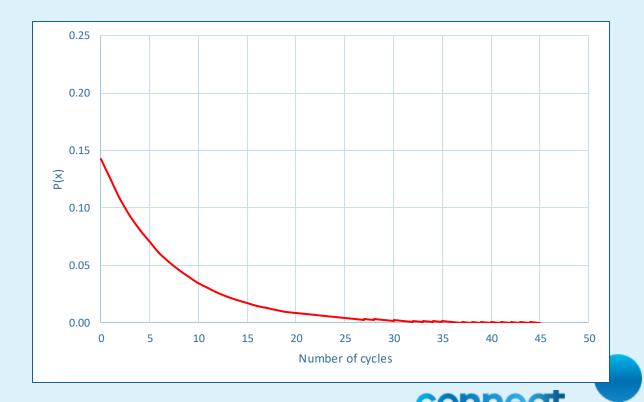


### Coke Drum Blowouts - background

- Water from the cutting drill hits 'hot spot' of coke
- Blowouts are a safety issue
- Identification is the first step to determining causes/mitigating actions
  - Large blowouts are readily apparent
  - Smaller blowouts may go unnoticed 

    data likely improperly labeled
- Are blowouts randomly happening, or are they correlated?




### Statistics – Exponential distribution

#### **Assumptions:**

10

- Events occur independently
- Events occur at a constant average rate

We can use Python to compare the time between blowouts with an exponential distribution,  $\lambda = 1/7$ 



### How can we identify smaller coker blowouts?

CHALLENGE

Blowouts last less than 1 minute and occur up to a few times per month

Need data at ~5 second intervals to see small blowouts

SOLUTION

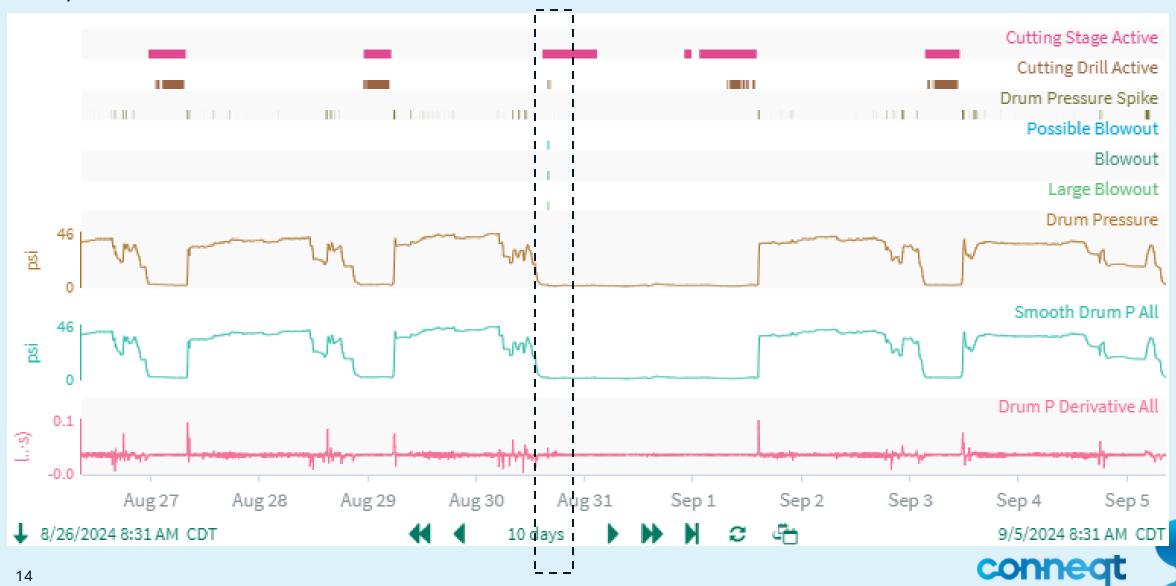
Pull multiple tags from historian and perform data analysis of coker operations

**RESULTS** 

With Seeq, we can identify blowout events and analyze them to find correlations



### Coke Drum Blowout analysis without Seeq


- Pull PI data for several years (~GB) into CSV
  - 5 second intervals = 6.3 million datapoints per tag
- Use Python for analysis
- Save hundred+ page PDFs for manual validation



- Capsules
  - Cutting stage from tag value seach
  - Cutting drill active from tag value search
  - Drum pressure spike positive derivative of smoothed pressure measurement
- Possible blowout when all capsules intersect



10 day trends



20 minutes



### Coke Drum Blowout: Statistical Analysis

#### Pull data into Seeq DataLab

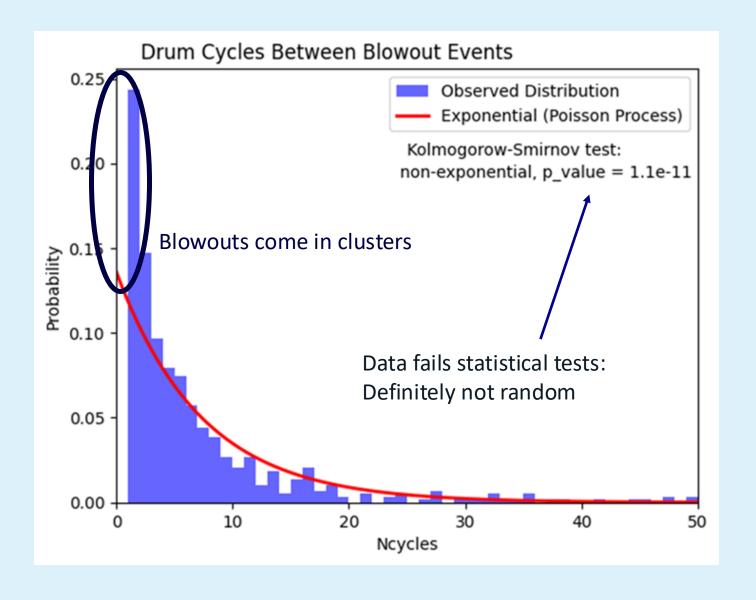
```
[4]:
       1 results = spy.search({
           'Path': 'AGCokeBlowout',
         'Asset': 'Refinery Drum *',
           'Name': 'Blowout',
       5 'Scoped To': WORKBOOK_ID
         }, old asset format=False)
       7 blowout ids = results[results['Name'] == 'Blowout']
       8 large blowout ids = results[results['Name'] == 'Large Blowout']
    Query successful
        Path
                     Asset
                                Name Scoped To
                                                                                 Time Count Pages Result
     0 AGCokeBlowout
                                 Blowout 0EF825E5-27C2-E8A0-B15B-7D49F30996C9 00:00:00.11
                                                                                                4 Success
```



### Coke Drum Blowout: Statistical Analysis

#### Use Python packages for statistical analysis

```
[142]: 1   observed_data = df_cut['delta_n_cuts'].values.astype(int)
2   lambda_est = 1 / observed_data.mean()


4   # Step 2: Perform a goodness-of-fit test (Kolmogorov-Smirnov test for exponential distribution)
ks_stat, p_value = stats.kstest(observed_data, 'expon', args=(0, 1/lambda_est))

6   print(f"KS statistic: {ks_stat}, p-value: {p_value}")

8
```



### Coke Drum Blowout: Statistical Analysis





- No need to pull PI data using Excel or custom Python connectors
- Easy visualization and troubleshooting
- Fast iteration: analysis took < 2 hours to build</li>



- Leverage Solution
  - Extend to other coke drums with asset groups
  - Easy to share analysis with other engineers

- Machine Learning
  - Pull blowout events into Python for further analysis
- Identifying and analyzing blowout events helps us to improve our operations and work safely

Still evaluating mitigation options





