

Seeq

William Fiser Jessy Devasahayam

ExxonMobil

Promoting Deepwater Production Stability with Slugging Analytics

William Fiser

Jessy Devasahayam

Flow Assurance Engineer

Flow Assurance Engineer

ExxonMobil

ExxonMobil

Guyana Stabroek Overview

Deepwater Steady-state Slugging Challenges

phase flowrates, temperature, and pressure

Problem Statement

Guyana Hydrodynamic Slugging

Guyana Operations is challenged by **flow instability** during normal & well testing operations in production risers

Caused by hydrodynamic slugging mechanisms that can contribute to:

- Flow instability
- Poor Well Test Quality
- Process Upsets

Guyana Hydrodynamic Slugging Surveillance

Problem Statement

Guyana Operations is challenged by **flow instability** during normal & well testing operations in production risers

 Caused by hydrodynamic slugging mechanisms that contribute to process upsets and unreliable data

Flow Assurance Challenges

- Multiphase flow modeling has trouble predicting hydrodynamic slug flow accurately
- Real-time simulation capability cannot accommodate slug tracking with desired simulation speed

Analytics Solution

- Utilize Seeq data analytics and Guyana PI Historian data to:
- <u>detect</u> past and current hydrodynamic slugging events
- generate experiential slug map
- <u>determine</u> analytical minimum flowrate to avoid hydrodynamic slug flow during steady operations
- **develop** monthly classification reports to monitor stability

Leveraging Seeq for Slugging Detection

Classify riser top pressure fluctuation

Hourly CoV calculation: (StdDev/mean) * 100%

Severe – CoV > X%

Moderate – X% < CoV < X%

Stable – CoV < X%

Internal Field Slugging Trial

- Riser Top Pressure deviation increases as flowrate is decreased
- Riser top pressure deviation thresholds tuned based on field trial

Leveraging Seeq for Slugging Event Detection

Classify riser top pressure fluctuation

Identify if stable flow condition is present

Slugging Classification Output

Hourly CoV calculation: (StdDev/mean) * 100%

Severe – CoV > X%

Moderate – X% < CoV < X%

Stable – CoV < X%

Condition to detect stable well flow to riser with < X% hourly fluctuation for 6+ hr

Aggregate, analyze, and publish riser slug events with operating parameters to PowerBI tool, enabling visualization for all disciplines

- Conditions detected & recorded by Seeq formulas over production life used for experiential slug map to determine minimum rates to ensure flow stability
- Seeq advanced data analytics capabilities empower statistical classification of flow stability from extensive data set of existing deepwater Guyana assets

Real-Time & Monthly CoV Classification Overview Tree Map

Treemaps utilized for real time & monthly average overview screens

Slugging Analytics for Operations Monitoring

Increasing Granularity

Production Flowrate Advisory

FA Surveillance Slug Dashboard

- Dynamic, riser-specific minimum gas rate recommendation to ensure flow stability
- Production duration by slugging classification throughout life of each riser
- Visualize most relevant experiences to current conditions with histogram and filterable dataset
- Estimate slugging propensity of custom operating conditions by indexing of similar experiences

Analytics Solution

- Identify and characterize flow stability in production flowline/risers in Guyana
 - ✓ Compile experiential slug map from previous operating conditions
- Utilize characterization to establish operational envelope to ensure flow stability during normal operations
 - ✓ Informs operations of minimum flowrate
- Continue to build experiential slug map as operating conditions continue to evolve
 - ✓ Changing oil/gas/water flowrates as field life progresses

