

Chemours Adoption of Seed

John Wood MANUFACTURING EFFECTIVENESS DIRECTOR CHEMOURS Kris McQuay AUTOMATION & PROC CONTROL SR. STAFF CONSULTANT CHEMOURS

Speaker Introductions

John Wood

Kris McQuay

MANUFACTURING EFFECTIVENESS DIRECTOR

AUTOMATION & PROC CONTROL SR. STAFF CONSULTANT

Agenda

Background Pilot and Building Justification Roll-out & User Adoption **Current Implementation Use-Cases** Next Steps Summary/Conclusion

Founded **2015**

Sales \$6.8 Billion in 2022

Employees 6,600 (~5,000 in manufacturing)

HQs **Delaware**

NYSE CC

Chemours - Internal Use Only

TITANIUM TECHNOLOGIES

ADVANCED PERFORMANCE MATERIALS

THERMAL & SPECIALIZED SOLUTIONS

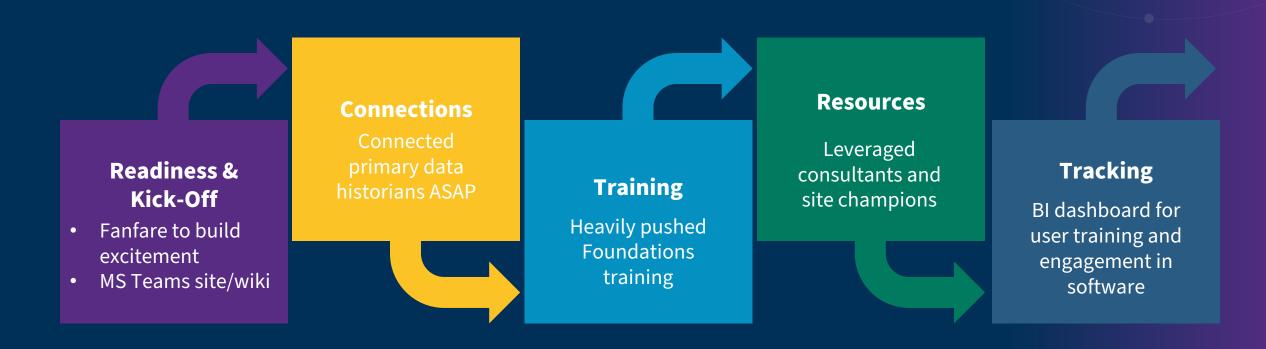
CHEMICAL SOLUTIONS

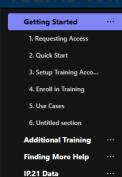
Chemours - Internal Use Only

Background

Need for better time-series data tool

Pilot and Building Justification





User Adoption

LIMS Data

Weather Data

Data Source Naming Import Data

Sharing Work

Asset Trees/Groups

Feature Requests

PowerBl

Seeq Add-Ons

Shift Schedules Conditions/Capsule...

Rolling Aggregates ... ···

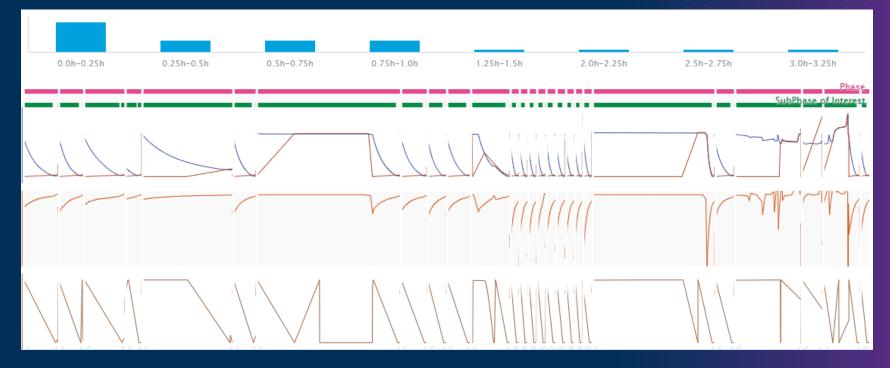
Current Implementation

Process Monitoring

- MS Power BI dashboard utilizing Seeq OData connection
- Monitors 100+ process parameters to provide insight into plant issues before they happen

-	Chemours	Smart Process Watcher				Last Updated: 3/31/2022 304:00 PM		
		By Andrei Mihalesco				Factor	Time Window	×
0		Control Mode	Control Mode Average	Rate	Feed Mode		3 days	\sim
Minutes o	f Feed Upset					6.72	RXN Area	~
0	Feed Upset					Loss (%)	All	~
0	High Temp Events (past 14 days)	•••	• , 0.00			1.75		
15	vents (Past 14 Days)	Issue				% of Time with Issue	Priority Score	1
	(past 14 stays)		/alve Outlet Temperature			27	27	68.
0.67	per Day (past 3 days) per Day (past 14 days)	Control Is				21	17	
1.29		Low	Weight			61	12	
		Variable In	nlet Temperature			19	11	
		High Tank	Temperature			9	9	
		Variable C	Outlet Temperature			11	7	
		High				6	6	
		High				6	4	

Batch Process Entitlement Analyses



Analyzing batch phase variability

Break phases into components

• Especially helpful if process is not fully automated and requires operator interaction

Analysis isn't novel, but efficiency of insights allows for more ideation and less data engineering

Seeq OEE Tools

Piloted across two production areas: one batch, one continuous

Developed digital readiness assessment

- Continuous processes are simpler to setup and higher likelihood of being ready
- Batch processes more complex and may require instrumentation or digitization of data to allow use

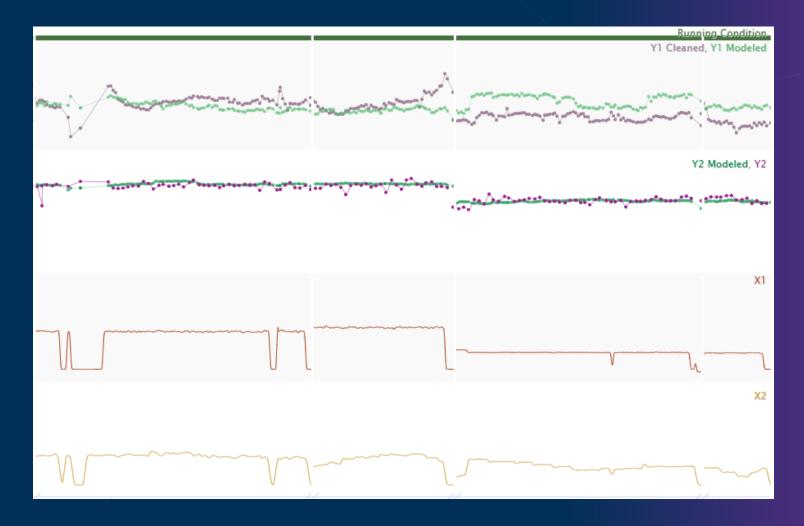
Integration with existing OEE reporting dashboards

Key user roles identified:

- Admin: Python and Advanced Seeq Capabilities
- Specialist: Advanced Seeq Capabilities
- User: Reason Code Entry

E Seeq E														
D	Downtime SeeQ													
	-	sset /U 1		,	✓ Online									
		ate Range ————————————————————————————————————	-	0										
		Capsule Start \downarrow 1	Capsule End	Duration	Mark	Reason Code	Author							
		2023-03-14 13:47:48 EDT	2023-03-14 14:00:35 EDT	00:12:47		- 🎤	-							
		2023-03-14 13:37:48 EDT	2023-03-14 13:44:12 EDT	00:06:24		- /								
		2023-03-14 13:29:48 EDT	2023-03-14 13:34:12 EDT	00:04:24		- /								
		2023-03-14 13:25:48 EDT	2023-03-14 13:26:12 EDT	00:00:24		- /	_							
		2023-03-14 13:15:48 EDT	2023-03-14 13:18:12 EDT	00:02:24		- /	_							
		2023-03-14 13:11:48 EDT	2023-03-14 13:12:12 EDT	00:00:24		- /	-							
		2023-03-14 13:07:48 EDT	2023-03-14 13:08:12 EDT	00:00:24		- 🧨	-							

Empirical Model Monitoring/Deployment


Allowed for model evaluation against real world data in near real-time

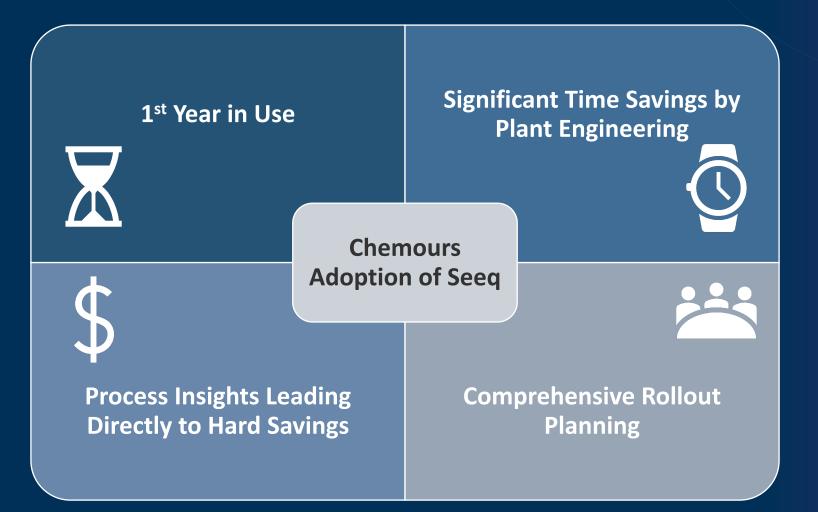
Process:

Developed empirical models using Python outside of Seeq

Transcribed model work into Data Lab using SPy to directly query process data

Deployed model results as new Seeq tags through scheduled runs of the Data Lab notebook

Next Steps



• Expand Data Lab literacy and use

Summary/Questions

Thank you

CONNEQT